Clinical medicine is one of the most challenging areas for education. The development of clinical competence requires the assimilation of large amounts of knowledge combined with acquisition of clinical skills and clinical problem-solving ability. Clinical skills include the technical skill in implementing a procedure as well as skill in patient consultation and physical examination. Clinical problem solving requires the ability to synthesize the information contained in a clinical case and to integrate it with the physician’s knowledge and experience in order to diagnose and manage the patient’s problem. It also requires the ability to work in teams and the ability to transfer one’s knowledge to unfamiliar situations such as rare problems, disasters and emergencies.

Currently, training toward clinical competence follows an apprenticeship approach, which consists of close expert supervision while interacting with patients. This method of training can subject patients to discomfort, risk of complications, and prolonged procedure times, creating a clinical governance dilemma. At the same time, there may be limited access to apprenticeship training in more complex scenarios with corresponding difficulty training in a time-effective manner. Intelligent clinical training systems hold the promise to address many of these issues. A facilitating technological environment has emerged in recent years through the maturation of research in intelligent tutoring systems, medical simulation, and virtual reality (VR) techniques and the development of Web 2.0 collaborative authoring and social networking tools.

The field of intelligent tutoring systems has come a long way since its start in the 1980s. There is now a well accepted standard architecture for such systems [1] and a number of well developed and tested user modeling techniques such as Bayesian networks [2]. The field has matured to the extent that Carnegie Mellon University is now using intelligent tutoring as a key technology in its ambitious Open Learning Initiative [3]. Recent work on incorporating medical ontologies into intelligent tutoring systems [4] and on leveraging existing large-scale medical ontologies like UMLS [5] hold promise to increase the domain coverage and quality of interaction and to decrease the cost of producing such systems.

Clinical training during the past decade has witnessed a significant increase in the use of simulation technology for teaching and assessment [6]. Medical simulations, in general, aim to imitate real patients, anatomic regions, or clinical tasks, and/or to mirror the real-life circumstances in which medical services are rendered. The simulator response will vary according to user actions (for example, heart rate and blood pressure will change appropriately depending on the dose of a particular drug administered intravenously [7]). Training and assessment using these simulators can focus on individual skills (e.g., ability of a resident to intubate [8]) or the effectiveness of teams [9, 10].

The use of virtual and augmented reality techniques to create realistic simulations of the physical aspects of the clinical environment is attracting increasing attention due to the promise of creating high-quality training environments, and to the rapid development and decreasing cost of software and hardware, driven in part by developments in the computer game industry. Building upon successful VR simulations in specific areas [11–13], a stream of work has emerged to build generic open-source software toolkits for medical VR
simulation [14–17]. These emerging tool-
kits should help to speed the development 
of high-quality VR simulations for surgical 
training. This special issue on intelligent clinical 
training systems contains four papers that 
show how these advances in technology are 
offering advances in clinical training and 
conversely how the challenges of the clinical 
training environment are driving develop-
ment of new technology. The papers 
highlight issues in the design and construct-
ton of systems for training in clinical prob-
lem solving and clinical practice and the 
challenges in the integration of such sys-
tems into medical school curricula.

The paper by Buyl and Nyssen [18] pre-
sents the MedSkills system that supports 
the practice of evidence-based medicine. 
MedSkills provides a flexible environment 
for authoring and making use of evidence-
based knowledge for education in medical 
skills for all levels of healthcare profes-
sionals. The system makes use of a wiki that 
allows registered users to add, adapt, and 
correct content. The system organizes 
knowledge into cellular, organ, body, and 
best treatment knowledge maps and can 
support multimedia content. MedSkills 
currently encompasses knowledge in the 
areas of chest pain, respiratory problems, 
shock, burns, birth, and minor surgery and 
is currently used as an educational tool by 
several groups in Europe.

The paper by Rhiemora et al. [19] pre-
sents and evaluates a prototype virtual reality 
simulator for teaching dental proce-
dures. The system includes haptic feed-
back that can simulate tooth surface ex-
ploration and cutting for tooth prepara-
tion. The work makes first steps at integrat-
ing virtual reality surgical simulation with 
intelligent tutoring capabilities. It is able to 
monitor and classify the performance of an 
operator as novice or expert. It allows pro-
cedures to be visually and haptically re-
corded and replayed so that procedures as 
carried out by experts may be used to guide 
students.

Hayes-Roth et al. [20] describe STAR 
Workshop, a Web-based training system that 
automates efficacious techniques for 
idividualized coaching and authentic 
role-play practice. Several patient design 
features enhance role-play authenticity by 
replicating important human qualities and 
functional requirements of real patients. 
This study compares STAR Workshop to a 
Web-based, self-guided e-book and a no-
treatment control, for training the Engage 
for Change (E4C) brief intervention proto-
col to reduce alcohol use. The results sug-
gest that STAR Workshop is an accessible, 
scalable, cost-effective approach to training 
clinical interviewing skills.

Berner and McGowan [21] survey the 
literature and discuss the issues in the use of 
diagnostic decision support systems in medical 
education. The authors illustrate 
some of the issues that will be faced as these 
types of computer systems become available 
for use with medical students. While 
students will still need grounding in the 
clinical knowledge and skills that have always 
been necessary to become a physician, 
computer-based diagnostic programs are 
likely to influence the training that students 
receive and the manner in which they 
practice their craft.

A number of key technologies are coming 
together to enable a wave of innova-
tion in the way that clinical training is 
conducted. The innovations hold the 
promise not only to reduce the cost of clinical 
training but also to increase the quality 
by providing new sets of pedagogical tools for 
medical faculty to use. The papers in 
this special issue provide a glimpse of this 
coming wave. What is needed now is strong 
collaboration among medical school fac-
culty, experts in pedagogy, computer scien-
tists, and entrepreneurs in order to bring 
these developments into wide-spread use.

References

3. Open Learning Initiative, Carnegie Mellon Uni-

5. Kazi H, Haddow P, Suebnukarn S. Leveraging a domain ontology to increase the quality of feedback in an intelligent tutoring system. To appear in: Pro-
ceedings of the 10th International Conference on Intelligent Tutoring Systems; 2010 June 14–18; Pittsburgh, USA. New York: Springer.
6. Isenberg SB, et al. Features and uses of high-fide-

lity medical simulations that lead to effective learn-
7. Nguyen HB, et al. An educational course including 
medical simulation for early goal-directed therapy and the severe sepsis resuscitation bundle: an evalua-
8. Owen H, Plummer JL. Improved learning of a clini-
9. Dev P, et al. Virtual worlds and team training. An-
13. Seymour NE, et al. Virtual reality training improves operating room performance results of a random-
15. Bacon J, et al. The Surgical Simulation and Training Markup Language (SSTML): an XML-based lan-
16. Cavusoglu MC, Göktekin TG, Tendick F. GiPSi: A framework for open source/open architecture soft-
ware development for organ-level surgical simu-
18. Buyl R, Nissen M. MedSkills: a learning environ-
20. Hayes-Roth B, Saker R, Amano K. Automating Indi-